

Hopscotch Coding - Week 2 -
‘Labyrinth’

Overview
In this second week the class will be introduced to the idea of creating a functional game with a distinct set of controls
and rules. Inspired by the classic game Labyrinth a.k.a Marble Maze, the game will feature a character that moves with
the tilting of the iPad’s accelerometer and a sprite (target) that will randomly re-spawn when it is touched by the
character. The keywords in this lesson will be Collision, Accelerometer, Sprite. This will be the first lesson where pupils
will be designing a ‘game’ and as such there will be opportunity for them to be creative with characters and backgrounds
e.t.c.

Learning Objectives

• To understand and be able to use the terms Collision, Accelerometer and Sprite.
• To begin to develop both game design and coding skills with the use of the Hopscotch App.
• To be able to traverse a 2D plane on both the X and Y axis using a method of control.

Tools needed

• 15 Ipads

Starter Activity (10mins)

Before any activity commences with the iPads the tutor should post the keywords of the lesson on the board and give a
brief explanation of their use in today’s lesson e.g. Collision - “When something bumps into something else“. Be sure to
remind all of the pupils that they should use these words when discussing their work with either you or their peers. Do not
forget to remind the children of the previous weeks’ keywords and that they should still aim to use them. Introduce
today’s brief and that they are trying to emulate the classic game ‘Labyrinth’. If you wish, supplementary video material
could be included as a prompt for the class…

Activity 1 - Using the Accelerometer (15 mins)

First introduce the class to the accelerometer and how it measures the tilt of the iPad and relays data to Hopscotch.
Secondly introduce the four appropriate iPad tilted … conditionals to the class, explaining that all four will be included to
allow the character to move in all directions. The pupils should then, semi-independently, code their character to move in
the four directions (using the change x by and change Y by variables). It is advised that the class may not remember
everything from the previous week and therefore doing each direction one by one as a class may be best. This should be
taken as an opportunity to quiz the class on what they remember of using the X and Y plane. Once all the conditionals
have been coded encourage the class to Debug their game and change the value of each movement to find the speed
they prefer.

e: bookings@milittlepad.com www.milittlepad.com telephone: 07860 937 270

Activity 2 - Coding the Sprite and Collisions (10 mins)

Now that they have a character that moves across the screen the game requires a goal. Explain how this effects the
game - that it gives the game an aim (all games require an aim in order to be a game). This goal will be introduced as a
Sprite - a small character or shape that is not controlled by the player (also known in gaming as an NPC). In this
instance a good sprite would be an emoji of a trophy for example. Once the sprite has been chosen the tutor must
introduce the collision specific conditional that will be used today - ….. bumps …… This conditional will allow for any
variable to initiate and effect the character/sprite that has been selected once the collision has happened. In this instance
the pupils will require four variables. The first two are self explanatory - Start Sound and Set Invisibility. The second
two may need explaining.

Activity 3 - Re-spawning the Sprite (10 mins)

Re-spawning the sprite may take a little explaning. Directly below the other variables, pupils will require the variable Set
Position. Re-explain the concept of coordinates if the children have forgotten, and explain that Set Position requires
both an X and Y coordinate number. However instead of using the calculator they will use the random variable. Random
may need to be explained, particularly that it offers a two number range (the suggested range is 10 to 880). This will
cause the Sprite to randomly re-spawn somewhere on the screen. However as it is still invisible, they should finish
coding the sprite by including the Set Invisibility variable and returning the number to 0 (remember that it is measured in
percentages!).

Activity 4 - Customisation of Game (15 mins)

The final activity of this lesson will be predominantly led by the students as they are encouraged not only to Debug their
game but to customise it. They may customise it by adding more collision Sprites as well as including obstacles.
Obstacles are achieved by coding a Set Position variable within a … bumps… conditional on their main character, that
sends the character back to the beginning of the game. These are not compulsory suggestions, but rather ideas to get
the class to independently decide on new rules for their games.

National Curriculum:
Coding: Write a simple algorithm whilst commanding sprites.

Coding: Debugging and checking accuracy of game.

Coding: Create a short game/animation using a simple visual programming language.

Coding: Beginning understand basic computing and mathematical concepts and vocabulary.

General: Numeracy, Reasoning Skills, Creative Design

e: bookings@milittlepad.com www.milittlepad.com telephone: 07860 937 270

